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1. Introduction

Ceramics have several properties that make them appealing materials for a wide range

of practical applications. Since their strength is limited by brittle failure, the fracture of

ceramics has been the subject of extensive research. However, despite recent progress in the

area, a number of issues remain unresolved. For example, while the measured toughness

of single crystals is comparable to their surface energy, that of polycrystzliine mderials is

found to be up to an order of magnitude greater. In addition, the apparent toughness of the

material is observed to increese with crack length. Three mechanisms have been proposed

that may explain this behaviour: crack tip shielding by microcracking; crack deflection;

and crack trapping combined with crack face bridging by tough particles.

The possibility that microcracking may improve toughness has recently been the sub-

ject of intense investigation. Extensive microcracking is in fact observed around the tips of

cracks in brittle polycrystalline materials (Hoagland et al, 1973; Claussen, 1976; Mecholsky

et al, 1976; Wu et al, 1978). The microcracks increase the compliance of the solid, and

so shield the crack tip from remote stresses. It has been estimated that for a stationary

mode I crack, the near-tip stress intensity factors are reduced by around 30% due to mi-

crocracking. (Green et al, 1973; Hoagland et al, 1980; Evans and Faber, 1981; Evans, 1984;

Evans and Fu, 1985; Kachanov, 1986; Hutchinson, 1987; Rodin, 1987; Ortiz, 1987, 1988;

Ortiz and Giannakopoulos, 1989). The effect is slightly greater for a propagating crack,

due to the influence of the microcracked wake. (Charalambides and McMeeking, 1987;

Ortiz and Giannakopoulos, 1989). However, for a crack in mixed mode or mode II, the

shielding effect is almost imperceptible (Ortiz and Giannakopoulos, 1989). Furthermore,

although the microcracks do shield the crack tip, they also weaken the material ahead of

the crack. Ortiz (1988) has estimated that the reduction in strength due to microcracking

almost exactly offsets any gain in touhness due to crack tip shielding. Microcracking does

not therefore appear to be an effective toughening mechanism.

Crack deflection is a second plausible mechanism for toughening brittle materials.

Since the fracture of ceramics is predominantly intergranular, cracks tend to follow a tortu-

ous path through the material. Second phase particles and inter-granular residual stresses

also tend to deflect the path of a crack. This increases the fracture surface area, and

consequently raises the apparent toughness of the material. A rigorous three-dimensional

analysi3 of crack deflection has not been attempted to date, but preliminary estimates sug-

gest that crack deflection may inc.t.,sL. toughness by around 10-20% (Faber and Evans,

1983, Suresh, 1985).
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Crack trapping and crack face bridging are by far the most effective toughening mech-

anisms. Several experiments have demonstrated that if small quantities of ductile particles

are added to a brittle matrix material, its toughness may be increased by up to 60 times

(Mendelson and Fine, 1974; Krstic et al, 1981). It has long been recognised that crack

bridging is responsible for improving the toughness of fibrc-reinforced ceramics and ce-

ment. Bridging particles have also been observed in the wake of cracks in monolithic

ceramics (Swanson et al, 1987). Fig. 1 illustrates the mechanism for forming bridging

particles in the wake of a crack. As a semi-infinite crack propagates through a mate, *C

containing a distribution of particles, parts of the crack front reach the regions of higher

toughness and consequently arrest. As the load is increased, the remainder of the crack

continues to propagate, and bows out between the pinning particles. This process of crack

trapping is an important source of toughness in itself (Lange, 1970). If the particles are

sufficiently tough, the crack front eventually bypasses the obstacles, so that they are left

behind in the wake of the crack.

While the origin of bridging particles in composite materials is obvious, it is not imme-

diately apparent why bridging particles should be observed in monolithic ceramics. Evans

et al (1977) have suggested that the bridging particles may be attributed to the action

of inter-granular residual stresses. Substantial residual stresses may be set up in poly-

crystalline ceramics during manufacture, due to the thermal and elastic anisotropy of the

grains: stresses of the order 70-150 Mpa have been measured experimentally (Blendel and

Coble, 1982) and stresses of a similar magnitude have been predicted theoretically (Ortiz

and Molinari, 1988, Ortiz and Suresh, 1990). According to Evans et al (1977), grains in a

state of residual compression are less likely to be fractured by a growing crack and may be

left behind as bridging particles. Evans has pointed out that compressive grains may be

thought of as regions of increased toughness, and has suggested an expression relating the

magnitude of the compressive stress and the grain size to the equivalent toughnes , of the

particles.

Several criteria must be satisfied in order to maximise the toughening due to crack

bridging. The elastic modulus of the particles must not exceed that of the matrix material,

otherwise the crack tends to be deflected away from the particles. The toughening is also

sensitive to the strength of the bond between the particles and matrix. Weakly bonded

particles are pulled out in the wake of the crack and increase toughness by frictional energy

dissipation (McHugh et al, 1966; Hing and Groves, 1972). Particles firmly bonded to the

matrix fracture in the wake of the crack.

A number of calculations have been done to estimate the toughening effect of crack
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bridging. Many of these are concerned with frictionally constrained fibres in ceramics

(Aveston and Kelly, 1973; Hannant et al, 1983; Marshall and Cox, 1985; Budiansky et

al, 1986; Budiansky and Amazigo, 1989; Sigl and Evans, 1989). Other models consider

ceramics containing ductile particles (Budiansky, 1986, Budiansky, Amazigo and Evans,

1988). Several studies are devoted to crack bridging in concrete (Hillerborg et al, 1976;

Velazco et al, 1980; Wecharatana and Shah, 1982; Ballarini et al, 1984). The essential

features of these models are similar: they consider a two-dimensional (plane strain) crack

with a bridged zone behind its tip. The effect of this zone is repr-ret+A by a dtihuticn

of pressure p(b), acting on the crack flanks. The simplest models assume that p is a linear

function of the crack opening displacements b (Rose, 1987). More complicated expressions

have been used to model ductile particles or frictionally constrained fibres. The two-

dimensional calculations predict substantial improvements in toughness due to bridging:

increases of 10-20 times the matrix toughness have been estimated for a brittle material

reinforced by ductile particles, and 2-4 times for a fibre reinforced solid.

There are, however, some shortcomings associated with two-dimensional models of

crack bridging. The effect of the crack front bowing between obstacles cannot be taken

into account. Separate analyses suggest that crack trapping may considerably influence

toughness (Lange, 1970; Evans, 1972; Rose, 1975; Fares, 1990; Gao and Rice, 1990; Bower

and Ortiz, 1990). It is also difficult to estimate an appropriate form for the p - b relation.

Particles properly bonded to the matrix are highly constrained, and so behave elastically

even when subjected to loads up to 6 times their yield stress (Ashby et al, 1989). The

particles therefore essentially pin discrete points on the faces of the crack. While it ;s

sensible to represent the discrete pinning points as a distribution of pressure if the length

of the bridging zone greatly exceeds the particle spacing, this approximation breaks down

if there are only a few intact particles behind the crack front.

Until recently, a full three dimensional analysis of crack bridging has been beyond the

stope of conventional numer;cal methods. However, progress in the area of weight function

theory in fracture mechanics has provided an invaluable tool for solving problems of this

nature. Two different approaches have been proposed. The first is a standard boundary

integral formulation, where the crack is represented by a three-dimensional distribution of

dislocations. The computing effort required in this procedure may be significantly reduced

by using a solution found by Rice (1985) for the interaction of a point dislocation with a

crack front as a kernel. This technique was developed by Fares (1990) to solve the problem

of a crack bowing out between obstacles.

A second approach is based on work by Rice (1985, 1987) and Gao and Rice (1986,
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1987), who developed a linear perturbation scheme for calculating the variation in stress

intensity factor due to small changes in crack geometry. This method was used by Gao and

Rice (1990) to find first order solutions for the shape of a crack front trapped by an array of

tough obstacles. Their analysis was restricted to the situation where the particle toughness

exceeds that of the matrix material by a small amount, so that the crack front penetrates

the obstacles rather than bypassing them. More recently, Bower and Ortiz (1990) followed

a suggestion by Rice (1987) to extend the perturbation method to arbitrarily large changes

in crack geometry. They then applied this technique to find the shape of a crack front

L:s it bypasses the array of obstacles. Their results were in good agreement with those of

Fax s (1990). In this paper, the finite perturbation method is exLended to take into account

the effects of pinning particles in the wake of the crack, and is used in a three dimensional

analysis of crack bridging.

The problem to be solved is illustrated in Fig 2. Consider an unbounded elastic solid

containing a straight, semi-infinite crack on the plane x3 = 0, oriented so that its front

is parallel to the X2 axis. The solid is subjected to remote loads, which set up a uniform

distribution of mode I stress intensity K(s) = K- along the crack front. Now, assume

that there is a doubly periodic distribution of particles, with spacing L in the solid ahead

of the crack front. For simplicity, the elastic constants of the particles and matrix material

are taken to be identical, but the fracture toughness of the particles KP"& exceeds that ofC

the matrix K m at. The particles may be cylindrical, with the axis of each cylinder parallel

to the X3 axis, this would be representative of a fibre-reinforced material. Alternatively,

the particles may be spherical, with the centre of the particles on the plane X3 = 0 (a

typical configuration in a ceramic reinforced with metallic particles). In either case, the

X3 = 0 plane ahead of the crack front contains a distribution of circular regions, radius R,

where the toughness exceeds that of the matrix. Initially, we assume that the particles are

perfectly bonded to the matrix material. The analysis is subsequently extended to allow

particles to be pulled out in the wake of the crack. We now seek to calculate the behaviour

of the crack as it propagates through the composite.

Qualitatively, the behaviour of the crack is as follows. When the remote stress reaches

a magnitude such that K' = K m at, the crack begins to propagate through the solid.

Eventually, parts of the crack front run into the tough particles. Since K(s) < KP",

these parts arrest. When the remote load is increased by a small amount the remainder of

the crack front starts to bow out between the pinning particles, Fig 1. The shape of the

bow is determined by the condition that K(s) = Km at over the propagating regions, while

K(s) < KP? over regions in contact with nn obstacle. There are two possible ways in which

6



the crack can propagate past the row of particles. If Kp4r is less than a critical value, to be

determined, then the particles are penetrated by the crack front and eventually fracture.

The sequence of trapping, penetration and fracture repeats as the crack propagates through

the solid. Alternatively, the crack may bow out between the obstacles to such an extent

that parts of its front on the far side of the paticle begin to attract one another. Beyond

this point, the crack continues to grow unstably under decreasing remote load. Eventually,

the crack joins up on itself, leaving behind a row of circular bridging particles. The semi-

infinite crack front then continues to propagate until the next row of obstacles is reached,

whereupon the process is repeated. Several rows of bridging particles may form I- tbh wake

of the crack in this manner. However, the particles cannot remain intact indefinitely, and

may fail by one of two mechanisms. If the particles are strongly bonded to the matrix,

they fracture in the wake of the crack without appreciable pull-out. Alternatively, if Kpar

is large compared to the strength of the bond, the prrticles remain intact, and are pulled

out in the wake of the crack. If the toughness of the interface is low, the pull-out is resisted

mainly by friction forces acting between the particle and the matrix, which decrease as the

particle is pulled free.

Analysis of this problem involves calculating stress intensity factors for a semi-infinite

crack with an arbitrarily shaped front, with its faces pinned over small circular regions.

It proves convenient to solve the problem in stages. The solution begins with a straight

semi-infinite crack subjected to remote loads. The bridging particles are then added, by

finding a distribution of point loads on the crack so as to pin its faces over small circular

regions. This part of the analysis is approximate, in that the particle radius is assumed

to be much smaller than the spacing. Next, the crack front is perturbed from its straight

configuration using the method described in Bower and Ortiz (1990), until the fracture

criterion is satisfied on its front. Finally, the crack is marched around a row of obstacles by

applying a further succession of first order perturbations. In this way, a complete picture

of the behaviour of the crack as it bypasses each row of obstacles can be built up.

2. Theory .:. -- ct'
2.1 Straight crack perfectly pinned by arrays of particles /

Consider the straight, semi-infinite crack shown in Fig. 2 subjected to remote loading,

so that a uniform mode I stress intensity factor K(s) = Ko is induced on the crack front.
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Initially, the crack is free of pinning particles, and the displacement at x is AU(x), with

U(x) = 2K' °  , (2.1)
27rl

A- ( V) (2.2)

where v is Poisson's ratio and y the shear modulus. Now, a single bridging particle may be

introduced in the wake of the crack by finding an appropriate distribution of point loads

over the pinned region. First, note that the displacement at x due to a pair of unit wedging

forces acting at 4 is AG( ,x) (Ulfyand, 1965), where

G(~x=4arctan{ 2.} (23)

P= [(XI - )2 + (x 2 - 6)2]1/2

Distrbuti..g wedging forces over a circular domain Q, radius R, centered at x ( ' ) on the

crack faces then gives rise to the following displacement at x

v(x) = AU(x) + A G( , x)p( )d . (2.4)

If the crack faces are completely pinned by the bridging particle, then v(x) = 0 for x E fQ,

and (2.4) gives an integral equation for the unknown distribution of wedging forces p(4) on

the particle. Note that it is not necessary to enforce complete closure over Q: any arbitrary

relation between v and p could be prescribed. In this way, the analysis may be extended

to model debonding between the particle and the matrix, or plastic deformation in the

particle. This issue is addressed in section 2.4, but for simplicity we begin by assuming

that the particle is perfetly bonded and v(x) - 0.

Equation (2.4) cannot be solved analytically in its present form. However, if the par-

ticle radius is much smaller than the distance to the crack front, G(t, x) may be simplified

as follows. Begin by expressing G in terms of polar co-ordinates centered at x(n), Fig. 2

G~'99' 1 rctn cs 0)(X ' -r cs '
r, 0, r, 1 0)=2 - }rta , (2-5)

p= [r2 + r '2 - 2r' cos(O - 0,)j1/2

Expanding the arctan in (2.5) to first order in p/x(n), and letting r/x (n), r?/z' )
- 0 then

leads to the following approximation to G

G(x) _- 7r + 2x(n (2.6)
Trp 2x "



Similarly, we may write U(x) - U(x( n )) to the sa.wne order of accuracy. The first term on

the right hand side of (2.6) represents the displacement field in a half-space due to point

loading. The second term corrects the solution for the presence of undamaged material

ahead of the crack front.

For R << xi"), the integral equation (2.4) therefore reduces to

0 = U(x(n)) + r + p(p,9)dp dO. (2.7)

A similar equation arises in the analysis of a rigid circular punch indenting a half-space,

with p( ) as the unknown pressure between the contacting surfaces, and AU(x ( n )) their

normal approach (Ulfyand, 1965). The solution has the fcrm

R P V R :p (2.8)

P() =- 4 -p2 [ _ P +.P
= [(X) _ )2 + (X(,I) )2

where P is the resultant of the pressure distribution. Substituting for p(p) in (2.7) and

integrating, we obtain an expression which may be solved for P

0 = U(x (n)) + 2 P +) (2.9)

Here, P/4R represents the displacement under a circular punch indenting a half-space and

is independent of the position of the crack. The second term corrects the solution for the

constraining effect of the unbroken surface ahead of the crack.

Now, noting that the pressure distribution (2.8) is square root singular at p = R, the

stress intensity on the crack front around the pinning particle may be calculated in the

usual way, with the result P
Kpar = (2.10)2Rvf7rR

The negative sign in equation (2.10) is a consequence of the sign convention for G, which

was chosen so that the positive forces acting on the crack faces tend to open the crack. The

pressure on the pinning particles is compressive, so P < 0. Equation (2.10) corresponds to

the well known solution for the stress intensity on an external circular crack subjected to

uniform remote tension.

Finally, the stress intensity factor on the straight crack front may be corrected for

the presence of the pinning particle. To first order in R/zi , the pinning particle may be
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approximated by a pair of wedging forces, magnitude P, acting on the crack faces. They

induce a stress intensity factor K(s) - PH(s, x(")), where

(n) 2 V1- -X11__

H(s,x()) = () (2.11)

The total stress intensity factor is therefore given by

K(s) = K' + PH(s,x("}). (2.12)

It is straightforward to extend the preceding analysis to allow for an arbitrary number

of pinning particles: the configuration shown on Fig. 2 is of particular interest. The crack

is now pinned by N parallel rows of circular particles. The spacing between particles in the

X2 direction is L, but otherwise their positions are arbitrary, and may be specified in terms

of the co-ordinates x(n) of a chosen particle on the nth row.

We may write down a closure condition analogous to equation (2.9) for each row of

particles. It is only necessary to add the effects of interactions between the particles. To

this end, we make use of the additional assumption that the spacing between particles

greatly exceeds their radius, so that the displacement at x due to a particle at may be

found by replacing the particle with a pair of wedging forces. This immediately leads to

0=U(X~n)) + p(n) 1 i~x E G(x~n) + m~j,.Xn))
rn#O

N o0

+ 5 p(k) > G(x(k) + ' ) (2.13)

k~n

where p(n) is now the pinning force on a particle in the nth row, and j is a unit vector

in the X2 direction. It will prove convenient later to simplify this result by defining a new

function G given by

1 1 + 0
+ 27r~(n) + G(x(') + m Lj'x('))'

4R.... n -- k;
G(x(n), x(k)) =-0 (2.14)

E a(x(k) + MLj x(n))' 
k

Clearly, the function G(x(k), x(n)) represents the displacement at a particle in the the nth

row due to the pinning forces acting on the kth row. Equation (2.13) may now be written

N

o = U(x ") ) + E P(k)G(x(n), x(k)), (2.15)
k=1

10



giving a set of N linear equations which may be solved for the unknown P('). The total

number of rows of particles N may be found from the condition that the stress intensity

factor on the last row must not exceed the particle toughness. From equation (2.10). this

gives

-< 2 ..... ar. (2.16)

Similarly, the expression for the corrected stress intensity factor on the straight crack

front (equation (2.12)) becomes

N 4-,-,O

K(s) = K' + EP() E H(sx)+ mL), (2.17)

which may be simplified by putting
+c -2x.I (sinh. 2--, (2,

H(s, x(n})= H ( x n m L j ) = :1(= .S
-~ -. r3 (L/2)2(sinh 2  + in' -.7n y,-'

where = -x n 1I /L and 77 = (,s - x T
O )!L to give

N

K(s) K + E P(n)H(s.x"')). (2.19)
n=1l

It is now possible to estimate the magnitude of the remote load (paramaterised by

Kc) required to advance the crack through the material. Strictly speaking. it is necessary

to enforce the condition K(s) =x:at at all points on the crack front at fracture. However.

once the bridging particles have been added to tLe wakc of the crack. .h-- -tress intcnsity

factor on its front is no longer uniform. Consequently, it is not possible to satisfy the

fracture criterion exactly without changing the shape of the crack front. This issue is

addressed in the next section. Nevertheless, it is possible to obtain an accurate estimate

of the increase in toughness due to bridging by setting the average stress intensity factor

along the crack front equal to K m a t . It is straightforward to show that the mean value of

K(s) is: -1 f L N p(n) (T-2

(K(s)) = ]K(s)ds = K '  + L (2.20)

whence the ;,u ;'ening ratio i- gi'.en by

=1LK
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By way of illustration, it may be shown that for the special case of a single row of

particles, distance b behind the crack front

p =- 2bf L L 2F(b/L)} (2.22)

LK - V 7 4R .9r2 b +  7r

KO_ 7 rL/(8R) - L/(4rb) + F(b/L) (22 3
Kmr~at - L/(8R) - L/(47-rb) + F~1)- I'

A-Par L .

K m at 2R V 2R 7rL/(SR) - L/(47rb) + F(b/L) -1' (.4

where

F(x)=-. .. arctan2 (2.25)
7r Z m.m Mn
m=1

2.2) Extension to wavy cracks

It is evident from the preceding discussion that the crack front will have a wavy profile at

fracture. In addition, parts of the crack may bow out between trapping particles. In order

to take into account these effects, it is necessary to extend the analysis to cracks with ail

arbitrarily shaped front: this issue is addressed next.

The following approach will be used. The analysis described in the previous section

makes use of three fiunctions: T'(x), giving the displacement at x under a uniform remote

load: G(x, ), which gives the displacement at x due to point loads applied at : and

H(s.x). which gives the stress intensity factor at a point s on the crack front due to

wedging forces at x. Clearly, if U G and H could be found for an arbitrarily shaped

crack, the procedure outlined in section 2.1 could be applied in the same way to add rows

of pinning particles. In practice, the functions are known exactly only for circular and

semi-infinite cracks. However, it is possible to calculate the change in the functions caused

by a small perturbation to the geometry of the crack, using the procedure developed by

Rice (1985). By applying a succession of such perturbations, G, H and U may then be

progressively updated for a crack with an arbitrarily shaped front. The equations involved,

cannot be solved analytically, so a numerical procedure is used.

We begin by summarising Rice's equations for the effects of a first-order perturbation

in geometry. For details of the derivation of these results, the reader is referred to the work

of Rice (1985,1987), Gao and Rice (1986,1987) and Bower and Ortiz (1990). Consider a

planar semi--infinite crack with an arbitrarily shaped front. and assume that the functions

G(x, ), H(s,, ) and U(4) are known for this configuration. In addition. assume that the
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crack is subjected to remote loading, so that there is an initial mode I stress intensity factor

K(s) on the crack front. The magnitude of the load will be parameterised by a remotely

applied stress intensity factor K'. defined by considering the energy released during an

infinitessimal crack advance in the x, direction. Given K(s), K' is found to be

Koo= K 2(X2)dx:, (2.26)

where L is one wavelength of the crack front.

It is convenient at this point to introduce another weight function for the crack, defined
byv

D(s,t) = lim I7 H(sz(t) - .n(t))

where z(t) is the position vector of a point t on the crack front C, and n(t) is the normal to

C. Evidently. D represents the stress intensity factors at a point s on the crack fron: as a

pair of square--root singular wedging forces approach the crack front at t. The sigri rance

of this weight function is discussed in Bower and Ortiz (1990). For instance, using (2.11),

it is easy to show that for a straight crack

1D(s, t) = (2.. )

(t S

Now. imagine allowing the crack to advance by a small amount 6a(s)n(s). The follow-

ing equations may then be shown to hold, accurate to first order in 6a(s):

6U(x) 6K- U(x) + K(s)H(s, x)6a(s) ds. (2.29)

6G(xC) I IJH(s, )H(sx)6a(s) ds, (2.30)

6K(s) K- Ko(S) + ] K(t)D(t, s)[6a(t) - n(s) n(t)6a(s)] dt. (2.31)

6H~s 1 x) f IH(A, x)D(s, A){S a(A)-.~5H(s, x)=2--

[x - z(A)]- x - z(s)] n(A), n(s)6a(s)} dA
Ix - z(S)]. [x - Z(S)]

6a(s) i H(A, x)D(s. A) [(x - z(A)) x (x - z(s))] k f x_____ _kdA

27. ic [x - Z(s)] -[x - z(s)] [n)<ns) kd
3,6a(s) [x - z(s)] •n(s)

+ H(s,x) 2 [x - z(s)] [x- z(s)]' (2.32)

D(s,)= 1 D(,,t)D(sX) ba(A)-
13



[z(,s) - z(t)] [z(A) -- z(t)] n(\) " n()6a()

[z(t) - z(s)]. [z(t) - z(s)]
[z(t) - z(s)] [z(A) - z(s)] n() ) n(s)ba(t) dA
[z(t) S z() [z(t) z(s)] J

,ba(s) D(At)D(s, A) [z(A) - z(t)] x [z(s) - z(t)] k n(A) x n(s), kdA

27r IC [z0t - z(s)] fz(t) - z(S)J
ba(t) J D(At)D('A lz(A) - z(s)] x [z(t) - z(s)] k(A) x n(t). kdA
27r- . CD AA [z(s) - z-t)] Z [Z(S) - Z(0x]

-( a(t)n(t) - 6a(s)n(s)]. [z(t) - z(s)]
- 2D(s, t) [z(t) - z(s)]. [z(t) - Z(s)] (2.33)

Here, fc denotes integration around the crack front; (x) and () are vector and scalar

products. In equations (2.29) and (2.31), the terms involving ,K/K represent changes

due to an increment ;n the remote load; the remaining terms are changes due to the

perturbation in crack geometry. Equations (2.32) and (2.33), which are modified forms

of Rice's results, are derived in Appendix A. The remaining equations may be found in

Rice (1985, 1987).

These results are the basis of an incremental method for calculating stress intensity

factors and weight functions for any arbitrarily shaped crack. For example, stress intensity

factors may be calculated by repeatedly applying equations (2.31) and (2.33). The analysis

begins with a convenient reference geometry for which stress intensities and influence func-

tions are known in closed form, such as a circular or semi-infinite crack. Equation (2.31) is

then used to calculate the change in stress intensity caused by a small change in the shape

of the crack. The problem may be posed in one of two ways: we may either find changes

due to a prescribed crack advance; or alternatively, we may calculate the displacement of

the crack front consistent with a given crack growth criterion, such as K(s) = Kc(z(s)).

In the latter case, (2.31) is a singular integral equation to be solved for ba(s). Once the

new shape of the crack has been found, equation (2.33) is used to calculate a new weight

function D for the perturbed geometry. Similarly, the crack face displacements U, and the

weight functions G and H may be updated using equations (2.29), (2.30) and (2.32). This

process may be repeated ad infinitum: by successively updating the crack geometry and

influence functions, we may calculate the effect of an arbitrarily large displacement of the

crack front. I:i actual calculations, the governing integral equations are discretised using

standard numerical techniques. A method of solution has been described by Bower and

Ortiz (1990), and is summarised briefly in Section 2.5. Since the appropriate equations are

accurate to first order in 6a(s), the numerical solution may be expected to converge as the

amplitude of each successive perturbation and the mesh size are progressively reduced.
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For the particular case of a periodic perturbation of a semi-infinite crack, equations

(2.29) to (2.31) may be simplified by reducing the integrals to one wavelength of the crack

front. In addition, it is possible to derive incremental expressions for the surnmed weight

functions G and H defined in equations (2.14) and (2.18). The derivations are somewhat

laborious, and are given in appendix B. Here, we merely summarise the results. Consider

allowing the front of a semi-infinite crack to advance by a small amount ba(s), which is

periodic in the x 2 direction so that

ba(s + mc) = ba(s), (2.34)

where c is the arc length along one wavelength (c = L for a straight crack), and m is any

integer. It then follows that

bU(x) = K- U(x)+ 1 f Ko(s)H(s,x)&a(s)ds, (2.35)

6G(x(n),x(k)) 1 fc/2 H(s ,x(n))H(s,x(k))6a(s)ds, (2.36)
2 _ -c/2

,bE(s) -6K IK (s) + c /2

W1 c/- 1 K(A)D(A, s)[ba(A) - ba(s)n(A) n(s)] dA, (2.37)

ffH(s, x) = H(A,x)D(A, s)[ba(A) - ba(s)n(A) . n(s)]dA5H~,x) =2--7.- 1c/2

+ba(s)1F(s,x), (238)

where:

+00

D(s,t) = E D(s + mc, t) (2.39)

A-' -4- ---o

(sx)= E-] H(A,x + (m - n)Lj)D(A + nc, s)2r f-c12 =-oo m=-o

[z(s) - z(A) + -nLj]. [x - z(s) + mLj]
[x- z(s) + mLj [x - z(s) + mLj] [( ns(2.40)

[x - z(A) + (m - n)Ljl x [x - z(s) + mLj]. k[(A) x n(s)]. k} dA- [x-z(s)+mLj].[x-z(s)+mLj] [()ns]kd

+Ix - z(s) + mLj]). n(s)
+0+3 1H(s, x + mLj) Ix  -z(s) + mLj - (s) +mj

The updated influence functions G and H may be used to add pinning particles to

the wake of the crack as outlined in section 2.1 For a semi-infinite crack pinned by N rows
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of parallel circular particles, the pinning force on each row of obstacles is calculated using

the closure condition (2.15). Here, we have assumed without proof that for RIL << 1, the

distribution of pressure on each pinned region is unchanged by modifying the crack front,

and may still be characterised by its resultant P. This is justified in Appendix B. The

stress intensity factors on the crack front are then found from (2.19)

In general, once pinning particles have been added to the wake of the crack, it is

necessary to modify the crack geometry in order to satisfy the fracture criterion at all

points on the crack front. For example, it was shown in section 2.1 that when pinning

particles are added to a straight crack, the condition K(s) = KCm' can only be met by

perturbing the crack front. This issue is addressed next.

The problem may be stated as follows. We wish to find a crack advance ,a(s) that

changes the stress intensities on the crack front by a known amount 6K(s), such that

K(s) + 6K(s) = Kc(z(s)). At the same time, we wish to satisfy the closure condition on

each particle for the perturbed geometry. To this end, we write down expressions similar

to (2.15) and (2.19) for the perturbed crack:

N

o = U(X(n)) + c5U(X~n)) + 1: (p(k) + bp(k)) (G (X(k), X(n)) + 6G (X(k), X(n))) ,(2.41)
k=1

N

K(s) + 6K(S) = KO (S) + 6Ko (S) + E pk + 6p(k)) (H(s, x(-)) + 6H(s, X(n))) .42)
k=1

where 6 p(k) is the change in pinning force on the kth row of particles. Neglecting second

order terms, and using (2.15) and (2.19), these results may be simplified to
N

0 = 6U(x (n )) + E (6p(k)G(x(n),x(k)) + p(k)3G(x(n),x(k))) (2.43)
k=1

N

6K(s) = 6Ko(s) + E (6P(k)H(sx(n)) + P(k)6H(sx(n))) (2.44)
k=1

Finally, substituting (2.35) to (2.38) into (2.43) and (2.44), and eliminating Ko(s) and U(x)

using (2.15) and (2.19), we find that

0 = 1 fc12 K(A)H(Ax(n) )a(A)dA + N P(k) - -. P( k) G(x(n),x(k)),(2.45)
k=1

1 fc/
2  6KM

6K(s) = K(A)D(A,s)[ba(A) - n(A) . n(s)6a(s)]dA + K(s)
27r -c/2

N N(K )
IVa(s) P(k)q(s' X(k)) + N 6P(k) _- P ( ) H(sx (k)) (2.46)

k=1 k=1
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Here, K(s) represents the stress intensity factor on the pinned crack: all variables relating

to the unpinned crack have been eliminated. Given an increment in stress intensity 6K(s),

(2.45) and (2.46) form a set of N + 1 coupled singular integral equations to be solved for

ba(s) and 3p(k). Once the new shape of the crack has been found, equations (2.32), (2.33),

(2.36) and (2.38) may be used to calculate updated influence functions for the perturbed

geometry.

2.3) Application to crack growth through toughened solid

The procedure outlined in the previous section may now be applied to solve the specific

problem of a semi-infinite crack propagating through a material containing tough second

phase particles. Consider the configuration shown in Fig. 2. A particulate toughened solid

contains a straight, semi-infinite crack: initially, the crack faces are free of pinning particles,

and we will assume that the crack front is just short of one row of obstacles. Now, imagine

applying a steadily increasing remote load to the body. When the load reaches a magnitude

K = K m at, the crack starts to propagate around the particle. Parts of the crack front

which touch the particle are assumed to arrest, so that ba(s) = 0 at these points. The

crack advance over the remainder of the crack front is determined by the condition that

K(s) = Krat : this may be satisfied by solving equation (2.37) with 6K(s) = 0. If there

are no pinning particles on the crack faces, we obtain the following conditions on the crack

advance

ba(s) = 0 Crack trapped, (2.47)

K OO

+2f c/2 K(A)D(A, s)[ba(A) - n(A) -. n(s)Sa(s)] dA Crack propagating. (2.48)

In principle, given an increment in remote load 6K-, (2.47) and (2.48) may be solved

for ba(s). However, this may be an ill-conditioned problem, since a very small change

in load may cause a large crack advance, particularly when the peak load is approached.

In practice, it is preferable to leave the increment in load as an unknown, and enforce

an additional constraint on the crack advance. Here, we have chosen to constrain the

maximum crack front displacement. The numerical procedure used to solve the singular

integral equation (2.48) is described in Bower and Ortiz (1990), and is summarised briefly

in the next section.

Once 6a(s) has been determined over the propagating regions of the crack, ,K(s)

on the arrested parts may be found using (2.37), and the weight function D is updated
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using (2.33). In addition, the crack face displacements U(x), and the influence functions

G(x, t) and H(x, s) are updated at chosen points to allow pinning particles to be added

to the crack at a later stage. This procedure is repeated to march the crack front around

the first row of obstacles. The behaviour of the crack as it bypasses a row of particles is

shown in Fig. 4. As the crack front bows between the inclusions, it eventually reaches a

configuration where parts of the crack begin to attract one another. At this point, the

applied load reaches a maximum, and the crack subsequently propagates under decreasing

remote load. Eventually, the crack joins up on itself on the far side of the obstacle, leaving

behind a bridging particle.

It is not possible to analyse the coalescence of the crack using the finite perturbation

method. The perturbation procedure only gives accurate results if the change in weight

function 6D is small compared to D during each step. Equation (2.33) shows that 6D

varies as ([z(s) - z(t)] . [z(s) - z(t)]) - 1 , where z(s) and z(t) are the position vectors of

points t and s on the crack front. If the crack is about to join up on itself, z(s) --* z(t) at

the points of coalescence. Consequently, in order for 6D to be small, 6a(A) must become

vanishingly small at these points, and an infinite number of time steps are required for the

crack to join up. In addition, D(s, t) becomes badly behaved at the point of coalescence,

so an extremely fine crack front mesh is required to get accurate numerical results, making

the perturbation method prohibitively expensive.

These difficulties may be avoided by using the method outlined in the section 2.1 to

add pinning particles to the wake of the crack. We therefore ignore the details of the

coalescence, and consider the crack at a slightly later stage. For example, we may resume

the analysis at the point when the crack front just short of the second row of obstacles, with

a single row of bridging particles in its wake. A crack configuration must now be found

that satisfies the appropriate displacement boundary conditions on each pinning particle,

and the fracture criterion K(s) -- K on the crack front. This may be reached in three

stages:

(i) Starting with a straight crack in the required position under unit remote load, equation

(2.15) is solved to find the magnitude of the pinning force on each particle;

(ii) The magnitude of the remote load K °° is adjusted so that the fracture criterion K(s) -
Knra&t at some arbitrary point (say s - ±c/2).

(iii) Finally, the crack front is allowed to advance until the fracture criterion is satisfied at all

points its front. To do this, we set 6K(s) = K(s)--Klat in (2.46), and solve the coupled

equations (2.45) and (2.46) for 6a(s), subject to 6K' = 0. If the necessary 6K(s) is
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large, several small perturbations may be applied to reach the correct configuration.

This procedure may be applied to add pinning particles to the crack at any stage as

it bows out between a row of trapping obstacles. A complete picture may then be built up

as the crack propagates around several successive rows of obstacles. This approach signifi-

cantly reduces the computing effort involved in the analysis, since any arbitrary number of

rows of obstacles may be added without having to solve for all intermediate configurations

of the crack. The actual number of rows of obstacles left intact in the wake of the crack is

determined by the particle toughness. Particles are added until the stress intensity factor

on the particles furthest from the crack front (calculated using equation (2.10)) exceeds
Kr.

2.4) Frictional crack bridging

In the preceding sections, it was assumed that the particles remain perfectly bonded to

the matrix material, and fail by fracture in the wake of the crack. If the interface between

particles and matrix is weak, it may fail before the particles fracture. The particles then

remain intact and are pulled out in the wake of the crack. The pull-out is resisted by

friction forces acting between the particles and matrix, which decrease as the particle is

pulled free. The energy dissipated as long grains are pulled out in the wake of a crack is

believed to be an important toughening mechanism in monolithic ceramics (Vekinis et al,

1990). In this section, the analysis of a pinned crack is extended to account approximately

for frictional pull-out.

The separation of an individual grain from the surrounding material is idealised using

the simple model illustrated in Fig. 3. The grain is taken to be cylindrical, radius R and

height 6crit. We assume that the particle is pinched into the matrix by thermal stresses, so

that a local compressive stress or acts perpendicular to the interface. The force required

to pull the grain free by a distance 6 is given by

P-- P(1 - (2.49)

Here, P0 is the maximum pinning force on the grain, given by

P = 7rfurRcrit, (2.50)

where f is the coefficient of friction. We note in passing that it is possible to enforce any

non-linear relation between crack opening and pinning force. For example, the analysis
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could be extended to model plastic deformation in the particles. However, this is not

pursued here.

Suppose that the matrix contains a regular distribution of similar grains, spacing L.

For simplicity, assume that the grains are all aligned, with axes parallel to the X3 direction.

Now, consider the behaviour of a semi-infinite crack in the X3 = 0 plane as it propagates

through the solid. The particles trap the front of the crack as before, which bows out

between them. We assume that the particles are sufficiently tough never to be penetrated

by the crack, so that they are left behind in its wake. The particles remain perfectly pinned

until the pinning force exceeds PO, at which point they start to be separated from the

matrix. During pull-out, the pinning force P is related to the crack opening displacement

6 by equation (2.49). When 6 > 6 crit, the particle is completely free from the matrix and

P=0.

It is straightforward to incorporate this force-cmk opening displacement relation into

the model of a bridged crack. By relaxing the constraint that v(x) = 0 in equation (2.4),

the separation of the crack faces is related to the pinning force by

N
6(x(n)) = 2AU(x(n ) ) + 2A E P(k)G(x(n), x(k)). (2.51)

k=1

Here 6(x( ' )) is the crack opening displacement at the nth row of particles, AU(x(n)) is the

displacement at the same pc'Ait for the unpinned crack, and AG(x( n ), x(k)) represents the

displacent at x(n) due to the pinning forces on the kth row of particles. For a straight

crack, U and G are given by equations (2.1), (2.3) and (2.14); for a wavy crack they may

be found using the perturbation procedure outlined in the previous section. For particles

perfectly pinned to the matrix. (x(n )) = 0. For debonding particles, 6(x(' )) may be fouiici

by eliminating p(,) between (2.49) and (2.51). If particles at x( ),X(2),...x(N) remain

perfectly pinned, while particles at x(N+ I ), x(N+ 2), ... x( M ) are debonding, we obtain the

following expressions for p(n) and 6(n)

M

-U(x (n)) = P(k)G(x(k),x(n)) 1 <n<N, (2.52)
k=1

2AU(x)) - 2AP 0  M 2Ax 2AP0  M 6(X(k))G(x(k),X(n)

k=N+l k=N+ (

N

-2A E P(k)G((k),x(n)) N < n < M. (2.53)
k=1

Equations (2.52) and (2.53) may be solved for the unknown p(k) over the perfectly pinned

grains, and 6(x(k)) at debonding particles. p(k) on debonding particles is then deduced
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using (2.51). Finally, the stress intensity factor on the semi-infinite crack front is calculated

using (2.19).

Although equatioas (2.52) and (2.53) are linear, the number of perfecly pinned particles

N is not known a priori, and must be detcrmined using an iterative procedure. The

following technique is used here. Initially, we assume +hat all particles are perfecly pinned,

and solve (2.52) for p(k). The condition that p(k) < Po is then checked: any grains where

this criterion is violated are allowed to debond. A new distribution of P and 6 is then

calculated, and this procedure is repeated until convergence occurs. Problems involving

frictional behaviour are load-history dependent. The solution calculated here implicitly

assumes that the crack is subjected to a monotonically increasing load, so that the force

on each pinning particle never reverses sign.

For a straight crack, the influence functions G and H are known in closed form. For a

wavy crack, they may be calculated using the perturbation procedure outlined in section 2.4.

However, it is found that in somc cases over 500 rows of debonding grains may be left in

the wake of the crack: a prohibitive amount of computing time is required to update the

influence functions for this number of rows. We have avoided this difficulty by updating G

and H explicitly for the 10 rows of particles closest to the crack front, and calculating the

remainder approximately. The function G(x(n),x(k)) is estimated by replacing the wavy

crack front with an equivalent straight crack. The equivalent crack is chosen by matching

the average distance between the row of particles and the crack front.

Estimating H is less straightforward. However, inspection of equation (2.38) shows

that if x - z(s) >> ba(s), the incremental expression for H may be approximated by

6H(s, x) = J H( A,x)D(A,s)[ba(A) - 6a(s)n(A) . n(s)]dA. (2.54)
2r -c/2

Comparison with (2.37) shows that this is equivalent to the expression for bK(s), with

K(A) = H(A,x) and 6K' = 0. Let HO(A,x) be the magnitude of H for a straight crack,

as defined in (2.18). Noting that Ho(A,x) is almost independent of A, and that K(A) is

constant, we concludE by induction that if K(A) is known for the wavy crack under a remote

load Ko, H may be deduced from

H(A,x) - Ho(A, x)K() (2.55)

Essentially, (2.55) states that the stress intensities induced by a row of point loads applied

a lung way from the front of a wavy crack may be estimated by replacing the point loads

by an equivalent uniform remote stress. The uniform stress is chosen to induce the same
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stress intensity factor on a straight crack as the point loads. The same result is obtained

by matching energy release rates for the two cases. The accuracy of the estimates of G and

H has been tested by comparing the approximate values with the exact results calculated

using the finite perturbation method. For the tenth row of particles behind the crack front,

the error in the approximate solution is less than 1%. Any arbitrary number of debonding

particles may thus be added to the wake of the crack.

2.5) Numerical Implementation

The numeric= procedure used to add pinning particles to the crack is straightforward,

and merely involves solving a set of linear equations. However, special procedures are re-

quired to solve the system of singular integral equations that arises during the perturbation

of ti- -- ack geometry. The numerical technique used to discretise the integral equations

follows closely the procedure given in Bower and Ortiz (1990), and will only be briefly

summarised here. One wavelength of the crack front is divided into mn elements, with three

nodes s2k-2, S2k-1 and s2k on the kth element. In addition, 2m- 1 collocation points such

that sj < tj < sj+l are defined. The crack advance is then approximated using Hermitian

interpolation between values of ba(s2k) and d6a(s2k)/ds for k = 1,2... m. The variation

of stress intensity factor over each element is approximated by means of a Lagrangian in-

terpolation between nodal values; similarly, to approximate the weight functions H, D, H

and D we write:

- h(s + kc, x(n)) (2.56)

H(s + kc, x 1
" ) ) 

- [z(s) - x(n) + kLj] . [z(s) - x(n) + kLj]'

d(s + mc, t) (2.57)
Ds + kc, t) = [z(s) - z(t) + kLj]. [z(s) - z(t) + kLj]'

H(s, x()) = h(s, x(n))(sinh 27rO)/(2, )

(L/ir)2(sin2 'r + sinh2 )'(.8

D(st) - d(s,t)(sinh2 7r)/(27r-y) (2.59)
(L/r)2(sin2 7r77 + sinh 2 (2.))

9 = (xi - zi(s))/L; C = (x2 - z2(s))lL

-y = (z;(s) - zi(t))/L; 7 = (Z2(S)- (t))L

and use three point Lagrangian interpolation between nodal values to approximate the

functions h, d, h and d. The functions h(s + kc, x) and d(s + kc, t) need to be stored (and

updated) over a number of wavelengths of the crack front, k = -M, -M + 1 ... M - 1, M,

as discussed in Bower and Ortiz (1990). In addition, it is convenient to define two more
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functions h0 (s, x) and d00(s, t), such that

ho(s, x) = lim h(s ± kc, x), (2.60)
kco

d. (s, t) = lir d(s ± kc, t). (2.61)
k oo

The infinite series in equations (2.18), (2.39) and (2.40) are then evaluated by splitting

each series into a periodic and a non-periodic part. The periodic part may be summed

explicitly, and the remaining series is summed numerically by truncating it at a finite

number of terms. For example, to evaluate the series in (2.39), we write:

d(s,t)(sinh2r-y)/(27r-y) +00 d(s + kc, t)

(L/ii )2(sin 2 7 + sinh 2 7r-) . [Xl(S) - xl(t)]2 + [x2 (s) - x 2 (t) + kL]2

+00 d00(s, t) +00 d(s + kc. t) - dc(s, t)

- _E [x(s) - x,(t)]2 + [x2(s) - x2 (t) + kL]2 + E [xI(s) - X,(t)]2 + [x2(s) - X2 (t) + kL 2
k=-oc k=_--0

d00 (s, t)(sinh 2 -y)/(2r,) d(s + kc, t) - d0 0 (s, t)
(n/ 22 X(sin2 +sin 2  ) +  y. [x 1 (s)-xi(t)] 2  -[x2(s)_x 2 (t) + kU1 2 2

The choice of a suitable value for M is discussed in Bower and Ortiz (1990): normally,

M = 2 is sufficient. The series in (2.18) and (2.40) may be evaluated in a similar way, but

for reasons of space will not be written out in full here.

To solve the integral equations (2.45) and (2.46), the integrands are expressed in terms

of nodal values of ba, K, H and D by means of the adopted interpolation functions. As a

result, the integrals may be evaluated explicitly, and the equations may be written in the

linear form

m

0 =5 Wi(x())ba(S2 i) + W,(X(n)6a'(S2 i)
i=0

N KO
+ (p(k) P() G(x(n),x(k)), (2.63)

k---1 
\ K

6K(t,) = Koo K(t,) + E V1 (tj)ba(s2i) + V(tj)ba'(s2i)
i=O

+ N p _ Ko p(k)) H(x(n),x(k)), (2.64)

where W,(x), W,(x), V,(t) and V(t) are integration weights depending on the current

crack configuration. The procedure used to calculate these functions is given in Bower and

Ortiz (1990). Equations (2.63) and (2.64) may then be solved for the nodal values of ba
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and 6a'. Subsequently, the numerical approximations to the weight functions need to be

updated: this is simply a matter of evaluating the appropriate principal value integrals in

(2.32) and (2.33): an appropriate method is outlined in Bower and Ortiz (1990).

3. Results and discussion

The perturbation method outlined in the preceding sections may be used to analyse the

behaviour of a crack as it propagates through a reinforced brittle solid. Here, we consider

an initially straight semi-infinite crack propagating through a brittle matrix material of

toughness K m at. The matrix is reinforced by a rectangular distribution of tough circular

particles, having a spacing L, radius R and toughness KP-'. The ratio of particle radius to

spacing is restricted to the range 0 < RIL < 0.25, to be consistent with the assumptions

made in Section 2. The solid is subjected to remote loads, acting so as to induce a mode I

stress intensity factor on the crack. The magnitude of the load is parameteised by a

remotely applied stress intensity factor Koo, as defined in equation (2.26). Initially, we

assume that the particles are perfectly bonded to the matrix material, and fracture in the

wake of the crack. The analysis will subsequently be extended to include the effects of

debonding between particles and the matrix.

3.1 Perfectly bonded particles

(a) Crack Trapping

Consider first the behaviour of a crack with no pinning particles in its wake, as it meets a

row of tough particles. The crack may surmount the row of obstacles in one of two ways. If

the toughness of the particles exceeds that of the matrix by only a small amount, they are

penetrated by the crack, which propagates through them. Alternatively, if the K cpar/K m'at

exceeds a critical value (to be determined), the segments of crack front bowing out between

the particles coalesce with one another, and the particles are left intact in the wake of the

crack.

The latter behaviour is illustrated on Figs 4 to 6. Fig. 4 shows the shape of one

wavelength of the crack front as it propagates around the first row of tough particles, for

a particle spacing L/R = 10. The front is initially straight, and the wake of the crack

is free of pinning particles. When the remote load reaches a magnitude Koo = K"T t ,

the crack starts to propagate through the solid. Parts of the crack front contacting the

particles arrest, while the remainder of the front bows out between the particles. Its shape

is determined by the condition that K(s) = K m at over propagating regions, while ba(s) = 0
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over regions in contact with the tougher material. Due to the change in crack geometry,

the stress intensity factor increases over regions of the crack which contact the particles:

the resulting distribution of K(s) along the crack front is shown in Fig. 5, at various stages

of growth. The results are shown as a function of s/c, where the arc-length s is measured

from the point of first contact of the crack front with the obstacle, and c is the arc-length

of one period.

The variation of remote stress as the crack propagates around the row of particles is

shown in Fig. 6. The load is plotted as a function of (a)/R: the parameter (a) is a measure

of the average crack advance, defined as AIL, where A is the area swept by one wavelength

of the advancing crack. The load reaches a maximum value of 1.68, and subsequently

decreases as areas of the crack front ahead of the particles start to attract one another. As

the load decreases, parts of the crack front arrest, and the propagating region progressively

diminishes in size to a small zone around the point of coalescence. The finite perturbation

method cannot be used to analyse in detail the coalescence of the crack, due to the singular

behaviour of the influence function D(s, t), as discussed in section 2. The calculation was

stopped when the crack front reached the last profile shown on Fig. 4. However. the remote

load must fall to zero at the point of coalescence: since the stress intensity factor is singular

where the crack front touches itself, it follows that K' - 0 to satisfy the condition that

K(s) = K m a t over the propagating region.

In practice, the coalescence of the crack can only be a quasi-static process as shown in

Figs 4 and 6 if the solid is subjected to displacement boundary conditions at infinity. Under

a steadily increasing remote stress, the configuration of the crack will become unstable when

the load reaches the peak value Kx/I'r = 1.68, and the crack will propagate dynamically

until it is arrested by the next row of particles. This behaviour is known as 'pop-in', and

has been observed during tests on Alumina by Swanson et al (1987).

Fig. 5 shows that the stress intensity on the region of the crack in contact with the parti-

cle reaches a maximum value K(s) = 2.84 at s = 0. Consequently, if KPar/K at > 2.84, the

crack bypasses the first row of obstacles, leaving a row of pinning particles: its subsequent

propagation is discussed in detail in the next section. Alternatively, if K ar/mat < 2.84.

the crack front penetrates the particles. In this case, the obstacles fracture, and no bridging

particles are formed. The behaviour of a crack breaking through a row of obstacles has

been discussed in detail by Gao and Rice (1990). They distinguish between two different

cases: stable (or regular), and unstable (irregular) penetration. Stable breakthrough im-

plies that the crack fully penetrates the obstacles before the maximum load is reached.

The penetration is unstable if the peak load occurs when the particles are only partially
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penetrated.

The maximum load under conditions of stable penetration orcurs when the particles are

fully penetrated, and the line fraction of the crack front inside the obstacles is a maximum.

In this case, the toughening due to trapping can be calculated explicitly, by means of
equation (2.26) (Rose, 1975). Since K(x 2 ) K' for x21 < R and K(x 2 ) - K m "

otherwise, we immediately obtain

00 K mat)2 + 2R ((KPar) 2 
- (K.at)2)} (3.1)

This expression is exact, and is valid provided the crack can reach the limiting configuration.

It gives an uppei bound to the toughening due to trapping if the crack bypasses the

obstacles, or in the event of unstable penetration.

The shape of the crack at the maximum load may be found using the finite perturbation

procedure. The required configuration is determined by the condition that K(s) = K par

inside the particles, and K(s) = !mt outside. This can be satisfied by applying a succes-

sion of perturbations such that 6K(s) = constant for ]x2j < R, and 6K(s) = 0 otherwise.

The change in crack geometry may be found by solving equation (2.31) for 6a(s) at each

increment. In this way, the limiting crack configuration may be found for a range of val-

ues of Kpar without having to solve explicitly for the load history in each case. A set

of results is shown in Fig. 7, for a particle spacing L/R = 6.67. It can be seen that if

Kpar/K ra t > 1.7, the limiting crack shape cannot be contained within the particles. Un-

der these conditions, the maximum load occurs before the obstacle is fully penetrated. This

case has been classified as unstable penetration by Gao and Rice (1990).

If the particles are not fully penetrated at maximum load. equation (3.1) does not

apply, and the toughness of the reinforced solid must be calculated numerically. A set of

crack profiles for an unstably penetrated obstacle is shown on Fig. 8, for K p ar/K at = 2.4

and L/R = 6.667. The maximum load was found to be AO/Kmat = 1.53: the correspond-

ing value predicted by equation (3.1)is 1.5. T .cra'k front bowing between the particles

joins up on itself after the obstacles are penetrated and a row of partially penetrated par-

ticles is left in the wake of the crack. Its subsequent behaviour is discussed below. For

small particles (RIL < 0.18), the penetrated obstacles fracture before the crack reaches the

second row of particleq. Under these conditions crack bridging does not contribute to the

toughness of the solid: the maximum load occurs while the crack penetrates a single row

of obstacles, at the point of instability. However, if RIL > 0.18, the penetrated particles

remain intact. This situation cannot be modelled exactly using the present method. since
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the pinned regions in the crack wake have been assumed to be circular. The penetrated par-

ticles are therefore replaced by a row of equivalent circular obstacles, chosen by matching

areas.

These calculations have been repeated for a range of values of LIR and KPar/K " t.

The results are summarised on Figs. 9 and 10. Fig. 9 shows the mechanism of trapping as a

function of the particle toughness and spacing. In the regime marked 'stable penetration,'

the crack front fuliy penetrates the obstacles at the maximum load, and the toughness

is given by equation (3.1). For slightly larger values of Kpar/K"' in the 'unstable pen-

etration' region, the maximum load occurs before the obstacles are fully penetrated. In

the region marked 'unstable bridging', a row of partially penetrated particles remains in

the wake, but fractures before the crack front reaches the second row of obstacles. In

the 'Partial Bridging' regime, the penetrated particles remain intact and contribute to the

toughness of the solid by pinning the crack faces. Finally, if K ar/Kgmt lies in the area

marked 'particles bypassed,' the obstacles are left intact in the wake of the crack. The

subsequent behaviour of the crack is discussed in more detail below. Fig. 9 shows that the

critical value of Kpar/K m t required for bridging particles to be formed increases as L/R

is reduced. If there is a large distance between the particles, the crack tends to bow out

further. so that the crack is more likely to coalesce ahead of the particles.

The effective toughness of the reinforced material is shown as a function of Kpar/Krlat

on Fig. 10. for various values of LIR. The toughness enhancement due to crack trapping

is a monotonically increasing function of KPar/KAn t and R/L. Even if no crack bridging

takes place, the particles can double toughness .,f a brittle matrix by trapping the crack

front.

(b) Bridging combined with trapping

If the particle toughness lies in the regime marked 'particles bypassed' in Fig. 9, at

least one row of bridging particles will be formed in the wake of the crack. This situation

is analysed by adding pinning particles behind the crack front and subsequently modifying

its shape, as discussed in section 2.2. The propagation of the crack immediately after

coalescence cannot be analysed using this procedure, since the calculation assumes that

the distance between the pinning particles and the crack front greatly exceeds the particle

radius, We therefore resume the analysis after the semi-infinite crack has propagated a

short distance beyond the first row of pinning particles. Fig. 12 shows the load as a function

of crack advance while the crack bypasses several rows of particles: the dashed portions of
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this curve occur during coalescence and have not been calculated explicitly. We have made

use of the result that K' must fall to zero at the point of coalescence in order to deduce
the probable shape of the KOO - (a) curve in this regime. Similarly, the dashed regions on

Fig. 13 have been deduced by noting that KP&1 --+ 0 at coalescence.

A set of crack front profiles during the formation of four pinning particles is shown on

Fig. 11. It can be seen that while the crack propagates between the first and second rows of

particles, its front remains approximately straight. At this stage, the remote load and the

stress intensity around the pinning particles are closely approximated by the results for a

straight crack bridged by single row of obstacles, given in equations (2.23) and (2.24). It is

straightforward to show that KOO/Kcm&t givea by (2.23) is a decreasing function of the crack

advance b for all LIR. Until the crack front is trapped by the second row of particles, the

remote load therefore always decreases as the crack advances. This situation is similar to
a crack propagating through a material of decreasing toughness: by differentiating (2.23),

the rate of change of effective toughness with crack advance is found to be

__K
eft  -K m at coshwrb/L

ab b sinh7rb/L(TrL/8R - L/4rb + F(b/L) - 1)2' (3.2)

where b is the distance from the particles to the crack front, and F(b/L) is defined in (2.25).

For b/L in the range 0.5 < b/L < 1.5, this may be approximated by

_K__
ff  -6.5K mat

cO--- b(L/R - 0.93L/b)2  (3.3)

Bower and Ortiz (1990) have investigated the behaviour of a straight semi-infinite crack
propagating through material of decreasing toughness. They have shown that the con-

figuration of the crack is not unique, in that the crack front may not remain straight. In

particular, small imperfections in the geometr- of the crack containing a critical wavelength

Ccrit are likely to grow as the crack advances. The critical wavelength is given by

7rKeff
Ccrit - - b . (3.4)

For the case in hand

Ccrit - b(L/R - 0.93L/b)2  (3.5)Ccrit 6.5(35

This result suggests that shortly after the crack bypasses a row of obstacles (b small), the

crack front may adopt a wavy configuration, and advance by forming a series of short

wavelength 'fingers'. However, for the range of LIR considered here, Ccrit > L for b L.

The present analysis constrains the crack front to remain periodic with wavelength L, so
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once the distance from the bridging particles to the crack front is comparable to the obstacle

spacing, the crack front remains approximately straight.

The stress intensity factor on the bridging particles is plotted as a function of crack

advance on Fig. 13, for LIR = 10. While the crack propagates between the first and

second rows, KPar/K m a is closely approximated by the result for a straight crack, given

in equation (2.23). The particles fracture when Kpar- - KPar: this condition may be used

to calculate the value of K P  required for the obstacles to remain intact until the crack

front reaches the second row of obstacles. Putting b - L in (2.23) we find that:

Kcpar 4F 1
__a_ R (3.6)

ca 2R7r/4 - 0.729R/L

For large L/R, the particle toughness for the pinning regions to be stable exceeds the

critical value required for the crack to bypass the particles. For example, if LIR = 10,

the crack bypasses the first row of particles if KPar/K at > 2.79. Equation (3.6) shows

that the particles fracture before the crack front reaches the second row of obstacles unless

Kpar/Kmat > 3.14. If KPar/Kmrna t lies between 2.79 and 3.14, the crack bypasses the first

row of obstacles, which subsequently fractures while the crack advances towards the second

row.

If Kpar/K m at exceeds 3.14, the bridging particles remain intact until the crack is

trapped by the second row of obstacles. At this point, the remote load starts to increase

while the crack bows out between the obstacles, as shown in Fig. 12. At the same time, the

stress intensity on the bridging particles increases rapidly, Fig 13. Eventually, Koo exceeds

the maximum value reached while bypassing the first row of obstacles: for LIR = 10, the

critical value K' = 1.43 is reached when (a)/R = 11. At this point KIPa/K cm = 3.54.

Consequently, if the particle toughness lies in the range 2.84 < KPar/Kmat < 3.54, the

maximum load occurs at the instant when the crack bypasses the first row of particles.

Although bridging particles are subsequently formed, they fracture at a lower load, and do

not contribute to the toughness of the reinforced solid Thiq hehaviour -Vill be referred to

as 'unstable bridging.' The range of-KPar /Kcmat for unstable bridging to occur is shown as

a function of R/L on Fig. 9. In this regime, variations in particle toughness produce no

change in the effective toughness of the reinforced material.

A similar argument applies to partially penetrated obstacles in the wake of the crack.

If the obstacles are small, they fracture before the crack front reaches the second row of

particles. Large particles remain intact for long enough to contribute to the toughness of

the reinforced solid by pinning the crack faces.
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The behaviour of the crack as it bypasses further rows of particles is similar. As the

particle toughness is increased, several stable rows of pinning particles may form in the wake
of the crack. Fig. 9 shows the number of bridging particles as a function of Ka /K a and

L/R. In the regions marked 'unstable bridging,' an additional row of particles is formed

but fractures without improving the toughness. Under these conditions, the maximum load

is reached at the point where the crack just bypasses a new row of obstacles. Otherwise,

the maximum load is reached when the row of bridging particles furthest from the crack

front fractures. In the steady state, bridging particles fracture at the same rate in the wake

of the crack as they are formed at its front. The load fluctuates considerably as the crack

propagates: this is a consequence of the periodicity of the distribution of particles. Smaller

variations in load would be expected if the particle distribution were random.

The maximum remote load has been plotted as a function of the particle toughness

on Fig. 14, for various values of RIL: KO may be interpreted as the effective toughness

of the reinforced solid. It can be seen that for Kpar/Kcmat > 7, K°O/rKmat varies linearly

with KPar/K m 'a, and is closely approximated by the relation:

KOO R Kpa
= 3.09 (3.7)

Kmat L Km~at

It is not difficult to explain this behaviour. Consider a straight, semi-infinite crack propa-

gating through a material of toughness K mat which contaiiis a rectangular distribution of

particles, toughness Kpar, radius R and spacing L. As the crack propagates a distance L,

the work done per unit area in fracturing the particles varies as , R2 (KP"*)2 /L 2 , while the
work done in cleaving the matrix is proportional to (1 - 7R 2/L 2 )(Kmat) 2 . It follows that

the effective toughness of the composite material is given by

Kga - L2 \(Iimat)2 1) (3.8)

Expanding (3.8) for K " r/ K mat >> 1 shows that

c_ R Ka (3.9)
Kmat Kmat,

giving the linear behaviour observed in Fig. 14. The constant coefficients in (3.7) and

(3.9) differ, since equation (3.9) gives the average effective toughness, while (3.7) gives the

maximum value, and includes the transient effect of crack trapping.

It is evident that adding small quantities of tough particles to a brittle material can

substantially improve its toughness. While the toughness enhancement due to crack tip
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microcracking or deflection is modest at best, the present analysis shows that crack trapping

combined with bridging can improve the fracture toughness by a factor of 5 or more.

However, several criteria must be satisfied in order to achieve these levels of toughness.

The particles must be perfectly bonded to the matrix material, and their toughness must

be of the order of 10 times that of the matrix. This may be the case in ceramics and glasses

reinforced by metallic particles, but is unlikely in monolithic ceramics. The analysis also

shows that only a very small number of perfectly pinned particles are likely to form in the

wake of a crack. Even if KPar/Km t ,_ 15, only 10 particles remain intact for LIR = 20.

(c) Comparison with experiments

Krstic et al (1981) have measured the toughness of glass reinforced by partially oxidized

aluminium particles. The assumptions made in the present analysis satisfy the conditions

of their experiments. The oxide layer on the particles forms a strong bond with the A12 03

in the glass, and the elastic constants and thermal expansion coefficient of both materials

are closely matched. The measured toughness (normalised by Kic for pure glass) is shown

on Fig. 14, as a function of the volume fraction of particles, Vf.

In order to compare experimental and theoretical results, it is necessary to relate

the particle spacing used in the analysis to an equivalent volume fraction of randomly

distributed particles. It is straightforward to show that if a plane cuts through a random

distribution of spheres, the area fraction of the plane inside the particles is equal to their

volume fraction. Matching area fractions for the periodic and random distributions, we

find that
R- V. (3.10)

Using (3.10), equation (3.7) may be expressed in terms of Vf as

Koo- KPar

kga-t = 1.74VVf K " (3.11)
C

This result has been plotted on Fig. 14. Taking Kpar/Kgat = 11 gives excellent agreement

between theory and experiment. However, this choice of particle toughness is arbitrary, and
is probably an underestimate. With higher values of K p ar, equation (3.11) overestimates the

toughness of the composite: this is to be expected, since the periodic particle distribution

used in the theory overestimates the toughness enhancement due to crack trapping by a

random distribution.
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The R-curve behaviour of a monolithic ceramic has been measured by Vekinis et

al (1990). Their results are shown on Fig. 16. The toughness reaches a steady state

after 1 1mm of crack growth, suggesting that the length of the bridged zone exceeds 2000

grain diameters. According to the present analysis, particles would need to be over 100

times tougher than the matrix to remain intact over this length: equation (3.7) would

then predict a corresponding toughness enhancement of the order of a factor of 30. It

is clearly not reasonable to assume that grains remain perfectly bonded to the matrix in

monolithic ceramics. The R-curve behaviour observed in Fig. 16 is more likely to be caused

by frictional crack bridging. This issue is addressed in the next section.

3.2 Frictional crack bridging

If particles are weakly bonded to the matrix, the interface between particles and matrix

fails before the particles fracture, so that they are pulled out in the wake of the crack. The

idealised model of this process was discussed in section 2.4. We assume each grain to be

cylindrical, having a radius R and height 6crit, with its axis perpendicular to the plane of

the crack. The particles are assumed to be sufficiently tough so as not to be penetrated by

the crack. The foremost row of particles remains bonded to the matrix, so that the effects

of crack trapping are as discussed in the preceding sections: the particles are bypassed by

the crack front and remain intact in the wake of the crack. The particles remain perfectly

bonded until the pinning force on a row of grains exceeds Po = iR6crit f r, at which point

they start to be pulled free from the matrix. Thereafter, the pinning-force is related to the

crack opening displacement by equation (2.49).

The toughening due to frictional crack bridging can be expressed in terms of four

non-dimensional groups

Koo__ Porit R L 26crit 6Crit(

Ka t = F (L 2A(K t) 2 ' L' AR.P0 ' R (3.12)

Here, the first group is the ratio of the frictional energy dissipation rate to the critical energy

release rate of the matrix material. This is equivalent to the parameter (KPar/Kmat)2 in

the case of perfectly pinned particles. The second group, LIR is a measure of the volume

fraction of particles, as before. The third group is new, and requires some explanation. The

ratio Po/L 2Scrit is a measure of the slope of the P- 6 curve during pull-out of the particles.

In contrast, AR is related to the compliance of the faces of the crack under a distribution

of pressure. Thus, the third dimensionless group in (3.12) is a measure of the ratio of

the compliance of the frictional pinning force-pull out curve to the elastic compliance of
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the crack faces. This parameter has an important influence on the length of the bridging

zone. The last dimensionless group governs the three-dimensional shape of the particles:

for simplicity, we will assume that 6crit/R = 2 for all calculations here.

Typical values for the parameters in this model are given in Table 1, chosen to be

representative of alumina. Parameters such as the grain size R and the elastic constants are

easily determined, but the parameters governing frictional-pull out can only be estimated.

Here, we have assumed that the compressive residual stress pinning each grain to the matrix

o, - 120MPa. Stresses of this magnitude have been predicted by Ortiz and Suresh (1989)

and measured by Blendel and Coble (1982). The coefficient of friction has been taken as 0.6.

For a grain size of the order of 4[im, this leads to a maximum pull-out force P - 0.008N.

Fig. 15 shows the predicted R-curve behaviour due to frictional crack bridging, for

an appropriate value of Po6crit/L 2 A(Kmat) 2 . The fluctuation in load as the crack bypasses

individual rows of particles has not been shown in Fig 15: we have assumed that the solid is

subjected to a monotonically increasing remote stress, and ignored unstable crack growth.

The effective toughness was calculated by adding rows of particles to the wake of the crack,

and then finding the maximum value of remote load as the crack bypasses the next row.

This procedure gives an upper bound to the combined toughening due to bridging and

trapping.

The R-curve initially rises steeply as the crack bypasses the first row of particles.

The crack growth during the initial increase in stress is of the order of the grain size, so

it is unlikely that this part of the curve could be detected experimentally. Instead, the

initial toughness of the material would appear to be greater than that of the matrix. The

initial toughness of alumina measured by Vekinis et al (1990) (see Fig. 15) is of the order

of 3.3 MPaV/'m: the inherent matrix toughness to give this initial value is 1.9MPav/-m.

The equivalent surface energy of 6 Jm - 2 is in good agreement with measured values for

Alumina. Crack trapping can therefore account for the observed discrepancy between the

surface energy and fracture toughness of polycrystalline alumina. However, the origin of

the tough grains responsible for trapping is yet to be determined with certainty.

Once the particles have been bypassed, they remain perfectly bonded to the matrix

for only a short time. For the parameters used here, no more than a single row was found

to remain fully pinned The remaining particles pull out in the wake of the crack. As a

result, the toughness enhancement due to bridging is greatly reduced: although over 500

particles remain in the bridged zone, the toughness enhancement is only of the order of

20-30%. The predicted increase in toughness is in good agreement with the experimentally
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measured values shown in Fig. 15; furthermore, the measured and calculated length of the

bridging zones are comparable.

The effects of varying the parameters Pobcrit/L 2A(Km"t )2, RIL and L 26c7 it/ARPo are

shown in Figs. 16 to 18. Fig. 16 shows the influence of the frictional energy dissipation

on the toughness increase due to bridging AKR, while Fig. 17 shows the variation of the

length of the bridged zone. The compliance ratio L2 crit/ARPo has little influence on the

toughness: varying this parameter from 10 x 10 to 100 x 103 produced only a 5% change in

toughness. However, the length of the bridged zone is controlled by the compliance ratio,

as seen on Fig. 18. This suggests that the toughness is mainly determined by the area

under the pinning force-pull out curve, and is not greatly affected by its shape.

The influence of grain size on the toughness of Alumina is an intriguing feature of the

experimental study by Vekinis et al. (1990). The toughness was observed to increase with

grain size, but the length of the bridging zone decreased. The effects of variations in grain

size may be calculated using the theoretical model developed here. From equation (2.50),

we find that P0 varies as R2. If the volume fraction of tough grains (parameterised by

LIR) remains fixed, and the aspect ratio 6rit/R is unchanged, then the first dimensionless

group in (3.12) varies linearly with grain size R, while the other groups are unaffected.
The effect of grain size on toughness and bridging length may therefore be deduced from

Figs. 16 and 17. The measured toughness agrees well with the calculated values, but the

theory predicts that the bridging length increases with grain size, contrary to experimental

observations.

The reason for this discrepancy is not clear. It is not difficult to adjust the parameters

in the theoretical model to produce a simultaneous increase in toughness and decrease in

bridging length: for example, the compliance ratio or the aspect ratio of the grains could be
chosen appropriately. The annealing process used to increase the grain size may alter the

residual stress distribution in the solid, or change the interfacial toughness. This influences

the number of grains left intact in the wake of the crack. However, the volume fraction and

aspect ratio of tough grains are difficult to measure, and no data are available at present

to allow a complete study.

4. Conclusions

A three-dimensional model has been developed to calculate the toughness of a brittle

material reinforced by tough particles. The reinforced material has been idealised as an
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elastically homogeneous solid, containing a regular distribution of tough circular particles.

The analysis predicts the behaviour of an initially straight, planar, semi-infinite crack as

it propagates through the solid under a uniform remote stress. The particles may inhibit

fracture by three mechanisms: firstly, the particles trap the crack front, causing it to bow

out between them. Secondly, the particles may remain intact in the wake of the crack,

thereby pinning its faces and carrying part of the load. Finally, the particles may debond

from the matrix and dissipate energy in frictional sliding as they are pulled out in the wake

of the crack. All three mechanisms have been investigated.

The results for particles perfectly bonded to the matrix are summarised in Figs. 9

and 10. Fig. 9 shows the number of pinning particles that form in the wake of the crack,

as a function of the obstacle spacing and toughness. If K Pa" exceeds K m at by only a small

amount, the obstacles are penetrated by the crack front, and no bridging particles are

formed. Crack trapping is then the only toughening mechanism. If the particle toughness

exceeds a critical value, they remain intact in the wake of the crack. The toughness en-

hancement due to combined crack trapping and bridging is shown in Fig. 10. Asymptotic

expressions have been found for the +-,gthness of the reinforced solid, both for particles

whose toughness is comparable to that of the matrix, and also for particles much stronger

than the matrix. If Kar < 3K 'at, the obstacles are penetrated by the crack front, and

no bridging particles form in the crack wake. Under these conditions, the toughness of the

reinforced solid is given by Rose (1975) as

K_ = 1+ - } (4.1)

Conversely, if I(a/KPRnt > 7, the results are closely approximated by the simple relation

0__ RJpar
= 3.09- (4.2)

Kgmat  LKmat

Equation (4.1) applies for all ratios of R/L, but (4.2) applies only for RIL < 0.25

Two important conclusions may be drawn from the theoretical results. Firstly, crack

trapning and bridging are very effective toughening mechanisms. While the toughness

enhai.cement due to crack tip microcracking or crack deflection is modest at best, crack

trapping combined with bridging can improve toughness by a factor of 5 or more. Secondly,

th-_ pvrticl t'ughness must exceed that of the matrix by a considerable margin if pinning

particles are to be formed. If KIpar/IK' < 3, the particles are always penetrated by the

crack front. Even if Kpar/K m at _- 15, only 10 rows of obstacles remain intact in the wake

of the crack.
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It is reasonable to assume that particles remain perfectly bonded to the matrix in

glasses reinforced by metallic particles, and the theoretical results are in good agreement

with the experimental data of Krstic et al (1981) on reinforced glass. However, the assump-

tion of perfect pinning does not predict accurately the toughness of monolithic ceramics.

In materials where the particles are weakly bonded to the matrix, the particles remain

intact and are pulled out in the wake of the crack. This has been modelled by assuming

that the particles remain perfectly bonded to the matrix until the pinning force exceeds a

critical value P0 , whereupon the particles start to separate from the matrix. During pull-

out, the pinning force decreases linearly with crack opening displacement. Under these

conditions the toughness enhancement due to trapping remains the same as for perfectly

pinned particles, but the toughening due to bridging is reduced. The predicted R-curve

for a typical ceramic is shown in Fig. 15. The improvement in toughness due to frictional

bridging is only of the order of 20%, although over 500 rows of grains remain intact in the

bridged zone. The R-curve behaviour of the reinforced solid is strongly dependent on the

strength of the bond between particles and matrix. If the bond is strong, the toughness

increases rapidly as the crack advances, and the maximum toughness is reached when only

a few bridging particles form in the crack wake. In contrast, when particles are pulled

out in the crack wake, the R-curve increases only slowly with crack advance. Under these

conditions several hundred bridging particles may form before the maximum toughness is

reached: this requires a large crack extension.

The calculated toughening due to frictional crack bridging is in good agreement with

the experimental measurements in alumina by Vekinis et al (1990). The influence of crack

trapping and bridging can account for the discrepancy between surface energy and fracture

toughness observed in polycrystalline ceramics. However, a key issue has not been addressed

by the present analysis. We have assumed that some grains in the ceramic are tougher than

others: the origin of the tough regions is not clear. There are several possible explanations.

Compressive residual stresses are set up in polycrystalline ceramics due to the thermal and

elastic anisotropy of the grains. Evans et al (1977) have suggested that grains in a state

of residual compression are less likely to be fractured by a growing crack and may be left

behind as bridging particles. A second possibility is that the crack may be deflected along

the interface between grains and remain trapped inside the interface. These are promising

areas for future research.
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Appendix A

This section derives the expressions for increments in the influence functions bH(s, x)
and 6D(s, t) given in equations (2.32) and (2.33). Rice (1987) gives a detailed discussion

of the procedure necessary to update these functions. Formally, if the crack front C is

advanced by an amount 6a(A) to a new configuration C, then 6H and 6D follow from:

5H(s,x) = f H(A, x)D(s, A)6a(A) dA, (Al)

6D(s,t) = I J D(s, A)D(A, t)6a(A) dA. (A2)

However, D(s, t) varies as (t - s) - 2 as t -- s. Consequently, the integrals in (Al) and

(A2) are undefined unless 6a(A) --* 0 at A -- s, in which case they are defined in the

principal value sense. Rice (1987) has pointed out that the integrals may be rt:6uL'.ised for
a general perturbation by exploiting the known behaviour of the crack under a self-similar

expansion, rotation and translation. The necessary steps have been discussed by Bower

and Ortiz (1990).

In order to apply (Al) to a general crack advance, it is first necessary to apply a
combination of a self-similar expansion q, a translation bx and a rotation 6w to the crack

front so as to set up a reference configuration Cre" f. The reference configuration must be
chosen so that the point x is common to both C and Cref, but the crack advance from Cref

to C satisfies baref(s) = 0. It is straightforward to show that an appropriatt combination

of expansion, translation and rotation are given by:

q = 1 -a(s) Ix - z(s)] -n(s) (M)
Ix - [x..z - )]' (A3)

6w = 6a(s) [(z(s) - x) x k] . n(s),
x -Z(s)]-[X - Z(S)] '(4

bx = (1 - q)x - x x k6w, (A5)

to first order in ba(s). The resulting reference crack front displacement is

baref(A) = ba(A) - [(q - 1)(z(A) - x) + bw(z(A) - x) x k] n(A). (A6)

In setting up the reference configuration, H(s, x) changes by an amount

6H(s,x) = H(s,x) -q )/2 (A7)

3 a(s)H(sx) [x - z(s)] , n(s) (A8)
2Ix -Z(s)]
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since H(qs, qx) scales as H(s, x)/q 3/ 2 under uniform expansion, and is invariant to transla-

tion and rotation. Adding this contribution to equation (Al), replacing 6a(A) with barer (A)

and performing some simple vector manipulations on the result leads to the expression

quoted in equation (2.32).

A similar procedure may be used to extend (A2) to general crack advance. This time,

it is necessary to set up a reference configuration that satisfies baref(s) = baref(t) - 0.

Bower and Ortiz (1990) give the necessary expansion, rotation and translation as

[,a(t)n(t) - 6a(s)n(s)]. [z(t) - z(s)]+ [z(t) - z(s] 1z(t) - z(s)] (A9)

w = [6a(s)n(s) - 6a(t)n(t)] . [(z(s) - z(t)) x k] (A10)
S[z() - z(t)] [z(S) - z(t)]

bx = ba(t)n(t) - (q - 1)[x(t) - x(t)] x k6w, (All)

and the resulting reference crack front displacement is

6aref (A) = 6a(A) - [(q - 1)z(A) + 6x + z(A) x k6w] n(A). (A12)

Since D(qs, qt) scales as D(s, t)/q 2 under uniform expansion, and is invariant to rotation

and translation, the change in D(s, t) in setting up the reference configuration is

6D(s,t) = D(s,i) t - l) (A13)

-2D(s, t) [6a(t)n(t) - 6a(s)n(s)) [z(t) - z(s)] (A14)
) z(t) - z(s)] -z(t) - z()]

Including this contribution in equation (A2), replacing 6 a by baref and simplifying the

result leads to the expression given in equation (2.33).



Appendix B

In this section, the steps necessary to derive equations (2.35) to (2.38) from (2.29) to

(2.32) are outlined.

Finding 6U(x) (equation (2.35)) is straightforward. From (2.29), we may write

6U(x) = K U(x) + Ko(s)H(s, x)6a(s) ds, (B1)6Vx) Koo--- 2 foo

where the first term gives the contribution to U due to a change in the remote load, and

the second term gives the effect of a change in the geometry. Since the crack geometry and

the crack advance are periodic, this may be re-written as an integral over one wavelength

of the crack
1 pc/2 +00

bU(x) = 2 E-Ko(s)H(s + mc,x)ba(s)ds. (B2)
mrJ M-00

Finally, noting that H(s + mc, x) = H(s, x - mLj) and using (2.18), we deduce that

1 c/2
1U(x) = f' Ko(s)H(s,x)ba(s)ds. (B3)

The expression for 6Ko(s) follows in much the same way. Begin by writing:

5K~s =6K00  
[00

-Ko(s) _ Ko(A)D(s, A)[ba(A) - 6a(s)n(A) n(s)] dA. (B4)

This may then be expressed as an integral over one wavelength as

,f o s -6K O [ +c/2 0

+ "' 0+ Ko(A) E D(A+mc, t)[6a(A)-6a(s)n(A).n(s)]dA. (B5)6Kos)= K00  c/
K Jc/2 m=-oo

Finally, using (2.39), this becomes

K KOs /2 Ko(s)D(A, s)[ba(A) - 6a(s)n(A) n(s)] dA. (B6), K~ -Ko o~s 27 c/- 2

Consider next updating H(s, x). Using the definition (2.19), 6H may be expressed in

terms of 6H:
+00

6H(s,x) = 6 6H(s,x + mLj). (B7)
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Now, 6H is given by (2.32). It is convenient to split (2.32) into a periodic and a non-periodic

part, as

6H (s, x) = - J H(A, x)D(A, s)[ba(A) - 6a(s)n(A) n(s)]

+ ba(s)T (s, x),(B8)

where

T (s,x) = -J H(Ax+)D(As)

n n(s) [X - Z(A)] [X - z(s)] [n(A). n()l
_ [-zA) [x-z(s)].k

I-( Ix - ()]. x ns] d
[x-z()] .[(s)] ) kn(A) (s)]]-k dA

Ix - [ z(s)], n()

+ 2H(sx) x - z()].x - z(s) (B9)

Using (B7), and rewriting the integrals over a single wavelength, the expression for (H

becomes

1 c/2 +00 +00

H(s, x) = -j > T H(A + nc,x + mLj)D(A + ncs)[6a(A)- a(s)n(A) .n(s)]dAH~~s 27) = c/2 =_- =_
fl-00 M= - 00

+00+6a(s) 1: T(s,x + nz). (B10)

m= -00

By defining two new functions:

D(s,A) = E D(A+nc,s), (B11)

+=oo+o
+00 +00

X'(s.,X) = E %'(s + nc,x +rnLj), (B12)
n=-00 M=00

and writing the integral in (B9) as a sum over successive wavelengths, we obtain the result

given in (2.38).

Finally, it is necessary to find a procedure for updating G(x(n), x(k)). Begin with the

definition in (2.14)

1 1 00

4R 27rX ) + E G(x(n) + mLj,x(n)),

G(x(n),x(k)) = I,m;o (B13)
00n k.

E G(x(') + mLi x(n))
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Each term in (B13) may now be updated in turn. Consider first the case n : k. From

(2.30), we immediately obtain
4-oo +00

6G(xkn),x(k))= 1 1 H(A,x(k) +mLj)H(A,x(")6a(A)dA, n - k, (B14)

which, written as an integral over one wavelength of the crack is

6G(x(n),x(k)) = 21 H(A,x(k))H(A,x(n))6a(A)dA, n : k. (B15)

Consider now the case n = k. The infinite sum may be updated using a similar procedure

as for the case n 0 k, leaving the term 1/4R + 1/(27r2X (")). To update this contribution.

it is necessary to return to the original derivation of G. Recall that this term represents

the approximate solution to the integral equation

0 = U(x) + j G( , x)p(t)d , (B16)

which is an expression for the the pressure required to pin a single circular region on the

crack. To update the solution, we therefore need to solve

0 = U(x) + 6U(x) + j {G( ,x) + 6G( ,x)} (p( ) + 6p(C)) d . (B1T)

Neglecting second order terms and using (B16), this becomes

0 = bU(x) + jo 6G( , x)p( ) + G( , x)6p(,) d,. (B1S)

Substituting for 6G from (2.30) then gives

0 = 6[(X)+j { 1 H(s,,)H(s,x)6a(s)ds} p(,)+-G(,.x)bp(,)d.. (B19)0~ ~1 = 9Ux + -

In the spirit of the analysis presented in section 1, we now assume that R << L and write

H (s, ) -- H (s, x), (B20)

accurate to lowest order in R/L. This leads to the following integral equation for bp(4)

0 = X + P- I H(s, 4)H(s, x)ba(s) ds + jG( , x)6p( ) d , (B21)0 = t ) C

where P is the resultant of the pressure distribution p( ), as defined in section 2. Compari-

son with (B16) shows that the solution to this equation must have the form given in eqution

(2.8). The distribution of pressure on each pinning particle therefore remains constant as

the crack front is perturbed, only its magnitude is affected. Furthermore, the second term

in (B21) clearly represents the change in the 1/4R + 1/27r2x (n) term in G. Conveniently.

combining terms in 6G shows that

6G(X(n),X(k)) f1/ H(s.x(n))H(sx(k))6a(s)ds. (B22)
2 -_c/2
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TABLE 1

Parameters for fr ictional pull-out model

Shear Modulus p 124 GNmn2

Poissons Ratio v 0.21
Inherent toughness Kcna 1.95 MNmn3 /2

Grain Size 2R 6.0 pmn
Height of grain bcrit 6pmn
Tough Grain Spacing L 23 pm
Residual stress Ur 120 MNmn2

Friction Coefficient f 0.6
PO =fO'l.rRb5Ct 0.008 N
A =(1 - z')/p 6.37x10-12 M2 N'1

Pobc~t/L A(Kal)24.2
RIL 0.15
L 2 bcrt/ARPb 20 x 103
6,rit / R 2.0
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Fig. 1: Mechanism for forming bridging particles in the wake of a

crack.
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Fig. .3: Model of a grain Pulling Out in the wake of a crack.
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ing with energy dissipation. L 2 6crit/ARPo = 20 x 103,

6crit/R = 2.0.
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Fig. 17: Variation of length of bridged zone with frictional energy

dissipation. L 2 6crit/ARLr 2 =i XO iti0, 6,'rit/R = 2.0.
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Fig. 18: Variation of length of bridged zone with compliance ratio.

PO~ri/AI~ t ) 20,6crit/R = 2.0.


